[docs]classBSLookbackOption(BSModuleMixin):"""Black-Scholes formula for a lookback option with a fixed strike. Note: - The formulas are for continuous monitoring while :class:`pfhedge.instruments.LookbackOption` monitors spot prices discretely. To get adjustment for discrete monitoring, see, for instance, Broadie, Glasserman, and Kou (1999). .. seealso:: - :class:`pfhedge.nn.BlackScholes`: Initialize Black-Scholes formula module from a derivative. - :class:`pfhedge.instruments.LookbackOption`: Corresponding derivative. References: - Conze, A., 1991. Path dependent options: The case of lookback options. The Journal of Finance, 46(5), pp.1893-1907. - Broadie, M., Glasserman, P. and Kou, S.G., 1999. Connecting discrete and continuous path-dependent options. Finance and Stochastics, 3(1), pp.55-82. Args: call (bool, default=True): Specifies whether the option is call or put. strike (float, default=1.0): The strike price of the option. Shape: - Input: :math:`(N, *, 4)` where :math:`*` means any number of additional dimensions. See :meth:`inputs` for the names of input features. - Output: :math:`(N, *, 1)`. All but the last dimension are the same shape as the input. Examples: >>> from pfhedge.nn import BSLookbackOption >>> >>> m = BSLookbackOption() >>> m.inputs() ['log_moneyness', 'max_log_moneyness', 'time_to_maturity', 'volatility'] >>> input = torch.tensor([ ... [-0.01, -0.01, 0.1, 0.2], ... [ 0.00, 0.00, 0.1, 0.2], ... [ 0.01, 0.01, 0.1, 0.2]]) >>> m(input) tensor([[0.9208], [1.0515], [1.0515]]) """def__init__(self,call:bool=True,strike:float=1.0,derivative:Optional[LookbackOption]=None,)->None:ifnotcall:raiseValueError(f"{self.__class__.__name__} for a put option is not yet supported.")super().__init__()self.call=callself.strike=strikeself.derivative=derivative
[docs]@classmethoddeffrom_derivative(cls,derivative:LookbackOption)->"BSLookbackOption":"""Initialize a module from a derivative. Args: derivative (:class:`pfhedge.instruments.LookbackOption`): The derivative to get the Black-Scholes formula. Returns: BSLookbackOption Examples: >>> from pfhedge.instruments import BrownianStock >>> from pfhedge.instruments import LookbackOption >>> >>> derivative = LookbackOption(BrownianStock(), strike=1.1) >>> m = BSLookbackOption.from_derivative(derivative) >>> m BSLookbackOption(strike=1.1000) """returncls(call=derivative.call,strike=derivative.strike,derivative=derivative)
[docs]defprice(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,volatility:Optional[Tensor]=None,)->Tensor:r"""Returns price of the derivative. The price is given by: .. math:: \begin{cases} S(0) \{ N(d_1) + \sigma \sqrt{T} [N'(d_1) + d_1 N(d_1)] \} - K N(d_2) & (M \leq K) \\ S(0) \{ N(d_1') + \sigma \sqrt{T} [N'(d_1') + d_1' N(d_1')] \} - K + M [1 - N(d_2')] & (M > K) \\ \end{cases} where :math:`M = \max_{t < 0} S(t)`, :math:`d_1' = [\log(S(0) / M) + \frac12 \sigma^2 T] / \sigma \sqrt{T}`, and :math:`d_2' = [\log(S(0) / M) - \frac12 \sigma^2 T] / \sigma \sqrt{T}`. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. volatility (torch.Tensor, optional): Volatility of the underlying asset. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - volatility: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: Parameters are not optional if the module has not accepted a derivative in its initialization. """(log_moneyness,max_log_moneyness,time_to_maturity,volatility,)=acquire_params_from_derivative_2(self.derivative,log_moneyness,max_log_moneyness,time_to_maturity,volatility,)returnbs_lookback_price(log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,volatility=volatility,strike=self.strike,)
[docs]@torch.enable_grad()defdelta(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,volatility:Optional[Tensor]=None,create_graph:bool=False,)->Tensor:"""Returns delta of the derivative. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. volatility (torch.Tensor, optional): Volatility of the underlying asset. create_graph (bool, default=False): If True, graph of the derivative will be constructed. This option is used to compute gamma. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - volatility: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: Parameters are not optional if the module has not accepted a derivative in its initialization. """(log_moneyness,max_log_moneyness,time_to_maturity,volatility,)=acquire_params_from_derivative_2(self.derivative,log_moneyness,max_log_moneyness,time_to_maturity,volatility,)returnsuper().delta(log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,volatility=volatility,create_graph=create_graph,strike=self.strike,)
[docs]@torch.enable_grad()defgamma(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,volatility:Optional[Tensor]=None,)->Tensor:"""Returns gamma of the derivative. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. volatility (torch.Tensor, optional): Volatility of the underlying asset. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - volatility: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: Arguments are not optional if it doesn't accept derivative in this initialization. """(log_moneyness,max_log_moneyness,time_to_maturity,volatility,)=acquire_params_from_derivative_2(self.derivative,log_moneyness,max_log_moneyness,time_to_maturity,volatility,)returnsuper().gamma(strike=self.strike,log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,volatility=volatility,)
[docs]@torch.enable_grad()defvega(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,volatility:Optional[Tensor]=None,)->Tensor:"""Returns vega of the derivative. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. volatility (torch.Tensor, optional): Volatility of the underlying asset. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - volatility: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: - Arguments are not optional if it doesn't accept derivative in this initialization. """(log_moneyness,max_log_moneyness,time_to_maturity,volatility,)=acquire_params_from_derivative_2(self.derivative,log_moneyness,max_log_moneyness,time_to_maturity,volatility,)returnsuper().vega(strike=self.strike,log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,volatility=volatility,)
[docs]@torch.enable_grad()deftheta(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,volatility:Optional[Tensor]=None,)->Tensor:"""Returns theta of the derivative. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. volatility (torch.Tensor, optional): Volatility of the underlying asset. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - volatility: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: - Risk-free rate is set to zero. - Arguments are not optional if it doesn't accept derivative in this initialization. """(log_moneyness,max_log_moneyness,time_to_maturity,volatility,)=acquire_params_from_derivative_2(self.derivative,log_moneyness,max_log_moneyness,time_to_maturity,volatility,)returnsuper().theta(strike=self.strike,log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,volatility=volatility,)
[docs]defimplied_volatility(self,log_moneyness:Optional[Tensor]=None,max_log_moneyness:Optional[Tensor]=None,time_to_maturity:Optional[Tensor]=None,price:Optional[Tensor]=None,precision:float=1e-6,)->Tensor:"""Returns implied volatility of the derivative. Args: log_moneyness (torch.Tensor, optional): Log moneyness of the underlying asset. max_log_moneyness (torch.Tensor, optional): Cumulative maximum of the log moneyness. time_to_maturity (torch.Tensor, optional): Time to expiry of the option. price (torch.Tensor): Price of the derivative. precision (float, default=1e-6): Precision of the implied volatility. Shape: - log_moneyness: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - max_log_moneyness: :math:`(N, *)` - time_to_maturity: :math:`(N, *)` - price: :math:`(N, *)` - output: :math:`(N, *)` Returns: torch.Tensor Note: - Arguments are not optional if it doesn't accept derivative in this initialization. """# price seems optional in typing, but it isn't. It is set for the compatibility to the previous versions.(log_moneyness,time_to_maturity)=acquire_params_from_derivative_0(self.derivative,log_moneyness,time_to_maturity)ifpriceisNone:raiseValueError("price is required in this method. None is set only for compatibility to the previous versions.")returnfind_implied_volatility(self.price,price=price,log_moneyness=log_moneyness,max_log_moneyness=max_log_moneyness,time_to_maturity=time_to_maturity,precision=precision,)
factory=BlackScholesModuleFactory()factory.register_module("LookbackOption",BSLookbackOption)# Assign docstrings so they appear in Sphinx documentation_set_docstring(BSLookbackOption,"inputs",BSModuleMixin.inputs)_set_attr_and_docstring(BSLookbackOption,"forward",BSModuleMixin.forward)