pfhedge.nn.functional.realized_variance¶
- pfhedge.nn.functional.realized_variance(input, dt)[source]¶
Returns the realized variance of the price.
Realized variance \(\sigma^2\) of the stock price \(S\) is defined as:
\[\sigma^2 = \frac{1}{T - 1} \sum_{i = 1}^{T - 1} \frac{1}{dt} \log(S_{i + 1} / S_i)^2\]where \(T\) is the number of time steps.
Note
The mean of log return is assumed to be zero.
- Parameters
input (torch.Tensor) – The input tensor.
dt (torch.Tensor or float) – The intervals of the time steps.
- Shape:
input: \((*, T)\) where \(T\) stands for the number of time steps and \(*\) means any number of additional dimensions.
output: \((*)\)
- Returns
torch.Tensor