pfhedge.nn.functional.topp¶
- pfhedge.nn.functional.topp(input, p, dim=None, largest=True)[source]¶
Returns the largest \(p * N\) elements of the given input tensor, where \(N\) stands for the total number of elements in the input tensor.
If
dim
is not given, the last dimension of theinput
is chosen.If
largest
isFalse
then the smallest elements are returned.A namedtuple of
(values, indices)
is returned, where theindices
are the indices of the elements in the originalinput
tensor.See also
torch.topk()
: Returns thek
largest elements of the given input tensor along a given dimension.
- Parameters
input (torch.Tensor) – The input tensor.
p (float) – The quantile level.
dim (int, optional) – The dimension to sort along.
largest (bool, default=True) – Controls whether to return largest or smallest elements.
- Returns
Tuple[Tensor, LongTensor] (named tuple)
Examples
>>> from pfhedge.nn.functional import topp >>> >>> input = torch.arange(1.0, 6.0) >>> input tensor([1., 2., 3., 4., 5.]) >>> topp(input, 3 / 5) torch.return_types.topk( values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))