QuadraticCVaR¶
- class pfhedge.nn.QuadraticCVaR(lam=10.0)[source]¶
Creates a criterion that measures the QuadraticCVaR.
\[\rho (X) = \inf_\omega \left\{\omega + \lambda || \min\{0, X + \omega\}||_2\right\}.\]for \(\lambda\geq1\).
References
Buehler, Hans, Statistical Hedging (March 1, 2019). Available at SSRN: http://dx.doi.org/10.2139/ssrn.2913250 (See Conclusion.)
- Parameters
lam (float, default=10.0) – \(\lambda\). This parameter should satisfy \(\lambda \geq 1\).
- Shape:
- input: \((N, *)\) where
\(*\) means any number of additional dimensions.
target: \((N, *)\)
output: \((*)\)
Examples
>>> from pfhedge.nn import QuadraticCVaR ... >>> loss = QuadraticCVaR(2.0) >>> input = -torch.arange(10.0) >>> loss(input) tensor(7.9750) >>> loss.cash(input) tensor(-7.9750)