pfhedge.stochastic.randn_antithetic¶
- pfhedge.stochastic.randn_antithetic(*size, dtype=None, device=None, dim=0, shuffle=True)[source]¶
Returns a tensor filled with random numbers obtained by an antithetic sampling.
The output should be a normal distribution with mean 0 and variance 1 (also called the standard normal distribution).
- Parameters
size (
int
…) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.dtype (torch.dtype, optional) – The desired data type of returned tensor. Default: If
None
, uses a global default (seetorch.set_default_tensor_type()
).device (torch.device, optional) – The desired device of returned tensor. Default: If
None
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- Returns
torch.Tensor
Examples
>>> from pfhedge.stochastic import randn_antithetic >>> >>> _ = torch.manual_seed(42) >>> output = randn_antithetic(4, 3) >>> output tensor([[-0.3367, -0.1288, -0.2345], [ 0.2303, -1.1229, -0.1863], [-0.2303, 1.1229, 0.1863], [ 0.3367, 0.1288, 0.2345]]) >>> output.mean(dim=0).allclose(torch.zeros(3), atol=1e-07, rtol=0.0) True