BSEuropeanOption¶
- class pfhedge.nn.BSEuropeanOption(call=True, strike=1.0, derivative=None)[source]¶
Black-Scholes formula for a European option.
Note
Risk-free rate is set to zero.
See also
pfhedge.nn.BlackScholes
: Initialize Black-Scholes formula module from a derivative.pfhedge.instruments.EuropeanOption
: Corresponding derivative.
References
John C. Hull, 2003. Options futures and other derivatives. Pearson.
- Parameters
- Shape:
Input: \((N, *, 3)\) where \(*\) means any number of additional dimensions. See
inputs()
for the names of input features.Output: \((N, *, 1)\). All but the last dimension are the same shape as the input.
Examples
>>> import torch >>> from pfhedge.nn import BSEuropeanOption >>> >>> m = BSEuropeanOption() >>> m.inputs() ['log_moneyness', 'time_to_maturity', 'volatility'] >>> input = torch.tensor([ ... [-0.01, 0.1, 0.2], ... [ 0.00, 0.1, 0.2], ... [ 0.01, 0.1, 0.2]]) >>> m(input) tensor([[0.4497], [0.5126], [0.5752]])
- delta(log_moneyness=None, time_to_maturity=None, volatility=None)[source]¶
Returns delta of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
volatility (torch.Tensor, optional) – Volatility of the underlying asset.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
volatility: \((N, *)\)
output: \((N, *)\)
- Returns
torch.Tensor
Note
Parameters are not optional if the module has not accepted a derivative in its initialization.
- forward(input)¶
Returns delta of the derivative.
- Parameters
input (torch.Tensor) – The input tensor. Features are concatenated along the last dimension. See
inputs()
for the names of the input features.- Returns
torch.Tensor
- classmethod from_derivative(derivative)[source]¶
Initialize a module from a derivative.
- Parameters
derivative (
pfhedge.instruments.EuropeanOption
) – The derivative to get the Black-Scholes formula.- Returns
BSEuropeanOption
Examples
>>> from pfhedge.instruments import BrownianStock >>> from pfhedge.instruments import EuropeanOption >>> >>> derivative = EuropeanOption(BrownianStock(), call=False) >>> m = BSEuropeanOption.from_derivative(derivative) >>> m BSEuropeanOption(call=False, strike=1.)
- gamma(log_moneyness=None, time_to_maturity=None, volatility=None)[source]¶
Returns gamma of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
volatility (torch.Tensor, optional) – Volatility of the underlying asset.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
volatility: \((N, *)\)
output: \((N, *)\)
- Returns
torch.Tensor
Note
args are not optional if it doesn’t accept derivative in this initialization.
- implied_volatility(log_moneyness=None, time_to_maturity=None, price=None, precision=1e-06)[source]¶
Returns implied volatility of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
price (torch.Tensor) – Price of the derivative.
precision (float) – Computational precision of the implied volatility.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
price: \((N, *)\)
output: \((N, *)\)
- Returns
torch.Tensor
Note
args are not optional if it doesn’t accept derivative in this initialization. price seems optional in typing, but it isn’t. It is set for the compatibility to the previous versions.
- inputs()¶
Returns the names of input features.
- Returns
list
- price(log_moneyness=None, time_to_maturity=None, volatility=None)[source]¶
Returns price of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
volatility (torch.Tensor, optional) – Volatility of the underlying asset.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
volatility: \((N, *)\)
output: \((N, *)\)
- Returns
torch.Tensor
Note
args are not optional if it doesn’t accept derivative in this initialization.
- theta(log_moneyness=None, time_to_maturity=None, volatility=None)[source]¶
Returns theta of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
volatility (torch.Tensor, optional) – Volatility of the underlying asset.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
volatility: \((N, *)\)
output: \((N, *)\)
Note
Risk-free rate is set to zero.
- Returns
torch.Tensor
Note
args are not optional if it doesn’t accept derivative in this initialization.
- vega(log_moneyness=None, time_to_maturity=None, volatility=None)[source]¶
Returns vega of the derivative.
- Parameters
log_moneyness (torch.Tensor, optional) – Log moneyness of the underlying asset.
time_to_maturity (torch.Tensor, optional) – Time to expiry of the option.
volatility (torch.Tensor, optional) – Volatility of the underlying asset.
- Shape:
log_moneyness: \((N, *)\) where \(*\) means any number of additional dimensions.
time_to_maturity: \((N, *)\)
volatility: \((N, *)\)
output: \((N, *)\)
- Returns
torch.Tensor
Note
args are not optional if it doesn’t accept derivative in this initialization.