Source code for pfhedge.instruments.primary.heston

from math import ceil
from typing import Optional
from typing import Tuple

import torch
from torch import Tensor

from pfhedge._utils.doc import _set_attr_and_docstring
from pfhedge._utils.doc import _set_docstring
from pfhedge._utils.str import _format_float
from pfhedge._utils.typing import TensorOrScalar
from pfhedge.stochastic import generate_heston

from .base import BasePrimary


[docs]class HestonStock(BasePrimary): r"""A stock of which spot price and variance follow Heston process. .. seealso:: - :func:`pfhedge.stochastic.generate_heston`: The stochastic process. Args: kappa (float, default=1.0): The parameter :math:`\kappa`. theta (float, default=0.04): The parameter :math:`\theta`. sigma (float, default=2.0): The parameter :math:`\sigma`. rho (float, default=-0.7): The parameter :math:`\rho`. cost (float, default=0.0): The transaction cost rate. dt (float, default=1/250): The intervals of the time steps. dtype (torch.device, optional): Desired device of returned tensor. Default: If None, uses a global default (see :func:`torch.set_default_tensor_type()`). device (torch.device, optional): Desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_tensor_type()`). ``device`` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Buffers: - spot (:class:`torch.Tensor`): The spot price of the instrument. This attribute is set by a method :meth:`simulate()`. The shape is :math:`(N, T)` where :math:`N` is the number of simulated paths and :math:`T` is the number of time steps. - variance (:class:`torch.Tensor`): The variance of the instrument. Note that this is different from the realized variance of the spot price. This attribute is set by a method :meth:`simulate()`. The shape is :math:`(N, T)`. Examples: >>> from pfhedge.instruments import HestonStock >>> >>> _ = torch.manual_seed(42) >>> stock = HestonStock() >>> stock.simulate(n_paths=2, time_horizon=5/250) >>> stock.spot tensor([[1.0000, 0.9902, 0.9823, 0.9926, 0.9968, 1.0040], [1.0000, 0.9826, 0.9891, 0.9898, 0.9851, 0.9796]]) >>> stock.variance tensor([[0.0400, 0.0408, 0.0411, 0.0417, 0.0422, 0.0393], [0.0400, 0.0457, 0.0440, 0.0451, 0.0458, 0.0472]]) >>> stock.volatility tensor([[0.2000, 0.2020, 0.2027, 0.2041, 0.2054, 0.1982], [0.2000, 0.2138, 0.2097, 0.2124, 0.2140, 0.2172]]) """ spot: Tensor variance: Tensor def __init__( self, kappa: float = 1.0, theta: float = 0.04, sigma: float = 0.2, rho: float = -0.7, cost: float = 0.0, dt: float = 1 / 250, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ) -> None: super().__init__() self.kappa = kappa self.theta = theta self.sigma = sigma self.rho = rho self.cost = cost self.dt = dt self.to(dtype=dtype, device=device) @property def default_init_state(self) -> Tuple[float, ...]: return (1.0, self.theta) @property def volatility(self) -> Tensor: """An alias for ``self.variance.sqrt()``.""" return self.get_buffer("variance").clamp(min=0.0).sqrt()
[docs] def simulate( self, n_paths: int = 1, time_horizon: float = 20 / 250, init_state: Optional[Tuple[TensorOrScalar, ...]] = None, ) -> None: """Simulate the spot price and add it as a buffer named ``spot``. The shape of the spot is :math:`(N, T)`, where :math:`N` is the number of simulated paths and :math:`T` is the number of time steps. The number of time steps is determinded from ``dt`` and ``time_horizon``. Args: n_paths (int, default=1): The number of paths to simulate. time_horizon (float, default=20/250): The period of time to simulate the price. init_state (tuple[torch.Tensor | float], optional): The initial state of the instrument. This is specified by a tuple :math:`(S(0), V(0))` where :math:`S(0)` and :math:`V(0)` are the initial values of spot and variance, respectively. If ``None`` (default), it uses the default value (See :attr:`default_init_state`). """ if init_state is None: init_state = self.default_init_state output = generate_heston( n_paths=n_paths, n_steps=ceil(time_horizon / self.dt + 1), init_state=init_state, kappa=self.kappa, theta=self.theta, sigma=self.sigma, rho=self.rho, dt=self.dt, dtype=self.dtype, device=self.device, ) self.register_buffer("spot", output.spot) self.register_buffer("variance", output.variance)
def extra_repr(self) -> str: params = [ "kappa=" + _format_float(self.kappa), "theta=" + _format_float(self.theta), "sigma=" + _format_float(self.sigma), "rho=" + _format_float(self.rho), ] if self.cost != 0.0: params.append("cost=" + _format_float(self.cost)) params.append("dt=" + _format_float(self.dt)) return ", ".join(params)
# Assign docstrings so they appear in Sphinx documentation _set_docstring(HestonStock, "default_init_state", BasePrimary.default_init_state) _set_attr_and_docstring(HestonStock, "to", BasePrimary.to)