Source code for pfhedge.instruments.primary.brownian

from math import ceil
from typing import Optional
from typing import Tuple
from typing import cast

import torch
from torch import Tensor

from pfhedge._utils.doc import _set_attr_and_docstring
from pfhedge._utils.doc import _set_docstring
from pfhedge._utils.str import _format_float
from pfhedge._utils.typing import TensorOrScalar
from pfhedge.stochastic import generate_geometric_brownian

from .base import BasePrimary


[docs]class BrownianStock(BasePrimary): r"""A stock of which spot prices follow the geometric Brownian motion. .. seealso:: - :func:`pfhedge.stochastic.generate_geometric_brownian`: The stochastic process. Args: sigma (float, default=0.2): The parameter :math:`\sigma`, which stands for the volatility of the spot price. mu (float, default=0.0): The parameter :math:`\mu`, which stands for the drift of the spot price. cost (float, default=0.0): The transaction cost rate. dt (float, default=1/250): The intervals of the time steps. dtype (torch.device, optional): Desired device of returned tensor. Default: If None, uses a global default (see :func:`torch.set_default_tensor_type()`). device (torch.device, optional): Desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see :func:`torch.set_default_tensor_type()`). ``device`` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Buffers: - spot (:class:`torch.Tensor`): The spot prices of the instrument. This attribute is set by a method :meth:`simulate()`. The shape is :math:`(N, T)` where :math:`N` is the number of simulated paths and :math:`T` is the number of time steps. Examples: >>> from pfhedge.instruments import BrownianStock >>> >>> _ = torch.manual_seed(42) >>> stock = BrownianStock() >>> stock.simulate(n_paths=2, time_horizon=5 / 250) >>> stock.spot tensor([[1.0000, 1.0016, 1.0044, 1.0073, 0.9930, 0.9906], [1.0000, 0.9919, 0.9976, 1.0009, 1.0076, 1.0179]]) Using custom ``dtype`` and ``device``. >>> stock = BrownianStock() >>> stock.to(dtype=torch.float64, device="cuda:0") BrownianStock(..., dtype=torch.float64, device='cuda:0') """ def __init__( self, sigma: float = 0.2, mu: float = 0.0, cost: float = 0.0, dt: float = 1 / 250, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ) -> None: super().__init__() self.sigma = sigma self.mu = mu self.cost = cost self.dt = dt self.to(dtype=dtype, device=device) @property def default_init_state(self) -> Tuple[float, ...]: return (1.0,) @property def volatility(self) -> Tensor: """Returns the volatility of self. It is a tensor filled with ``self.sigma``. """ return torch.full_like(self.get_buffer("spot"), self.sigma) @property def variance(self) -> Tensor: """Returns the volatility of self. It is a tensor filled with the square of ``self.sigma``. """ return torch.full_like(self.get_buffer("spot"), self.sigma ** 2)
[docs] def simulate( self, n_paths: int = 1, time_horizon: float = 20 / 250, init_state: Optional[Tuple[TensorOrScalar]] = None, ) -> None: """Simulate the spot price and add it as a buffer named ``spot``. The shape of the spot is :math:`(N, T)`, where :math:`N` is the number of simulated paths and :math:`T` is the number of time steps. The number of time steps is determinded from ``dt`` and ``time_horizon``. Args: n_paths (int, default=1): The number of paths to simulate. time_horizon (float, default=20/250): The period of time to simulate the price. init_state (tuple[torch.Tensor | float], optional): The initial state of the instrument. This is specified by a tuple :math:`(S(0),)` where :math:`S(0)` is the initial value of the spot price. If ``None`` (default), it uses the default value (See :attr:`default_init_state`). It also accepts a :class:`float` or a :class:`torch.Tensor`. Examples: >>> _ = torch.manual_seed(42) >>> stock = BrownianStock() >>> stock.simulate(n_paths=2, time_horizon=5 / 250, init_state=(2.0,)) >>> stock.spot tensor([[2.0000, 2.0031, 2.0089, 2.0146, 1.9860, 1.9812], [2.0000, 1.9838, 1.9952, 2.0018, 2.0153, 2.0358]]) """ if init_state is None: init_state = cast(Tuple[float], self.default_init_state) spot = generate_geometric_brownian( n_paths=n_paths, n_steps=ceil(time_horizon / self.dt + 1), init_state=init_state, sigma=self.sigma, mu=self.mu, dt=self.dt, dtype=self.dtype, device=self.device, ) self.register_buffer("spot", spot)
def extra_repr(self) -> str: params = ["sigma=" + _format_float(self.sigma)] if self.mu != 0.0: params.append("mu=" + _format_float(self.mu)) if self.cost != 0.0: params.append("cost=" + _format_float(self.cost)) params.append("dt=" + _format_float(self.dt)) return ", ".join(params)
# Assign docstrings so they appear in Sphinx documentation _set_docstring(BrownianStock, "default_init_state", BasePrimary.default_init_state) _set_attr_and_docstring(BrownianStock, "to", BasePrimary.to)