



# Rreferred<br>Networks

## **Rethinking Directional Parameterization in Neural Implicit Surface Reconstruction**

Zijie Jiang<sup>1</sup>, Tianhan Xu<sup>2</sup>, and Hiroharu Kato<sup>2</sup> <sup>1</sup>Tokyo Institute of Technology, <sup>2</sup>Preferred Networks, Inc.

Existing directional representations in neural implicit surface  $\frac{1}{2}$   $\frac{1}{2$ reconstruction methods will bias the reconstruction quality of different types of objects:

### **Analysis**

Nearest surface points Normals

Different from viewing direction, reflection direction 1) **depends on learnable geometry** (i.e., normals) and 2) **may vary significantly during the optimization**. These two factors lead to the following issues that exist during the optimization process:

- (a) Wrongly associating the update of intersecting surface with unrelated surface.
- (b) Introducing high-frequency variations to the input of the radiance network.



NeuDA  $[2]$ 

NeuDA,  $\overline{w}$  reflection dir





 $MILAMO$ 





### **Our Solution**

We notice that both issues are caused by using reflection direction at sampling points beyond a certain distance from the intersecting surface. Using viewing direction at these points can avoid these issues. Finally, we propose the **hybrid directional representation**:

> $\mathbf{d}_{\text{hyb}} = \text{normalize}(\alpha \cdot \mathbf{d}_{\text{ref}} + (1 - \alpha) \cdot \mathbf{d}_{\text{view}})$  $\alpha = \exp(-\gamma \cdot \mathrm{detach}(|f(\mathbf{x})|))$









Object w/ specular surfaces









Object w/ concave structures





Object w/ both specular surfaces and concave structures





Reference RGB Viewing dir. Reflection dir.

**Surface** 

normal

**• Relationship between viewing direction and reflection direction:** 

